MPSI A 2004-2005

Feuille d'exercices Groupes

Exercice 1:

- 1. Montrer que l'ensemble des bijections de l'ensemble *X* est un groupe.
- 2. Montrer que l'ensemble des bijections continues de **R** dans **R** est un groupe.
- 3. Les bijections dérivables de **R** dans **R** forment-elles un groupe ?

Exercice 2:

- 1. Montrer que l'application $\exp : \mathbf{R} \longrightarrow \mathbf{R}^*$ est un homomorphisme de groupe. Quelle est son image et son noyau?
- 2. Montrer que l'application $f: \mathbf{R}^* \longrightarrow \mathbf{R}^*$ définie par $x \longmapsto \frac{x}{|x|}$ est un homomorphisme de groupes. Quel sont son image et son noyau?
- 3. Mêmes questions avec l'application $g: \mathbb{C}^* \longrightarrow \mathbb{C}^*$ définie par $z \longmapsto \frac{z}{|z|}$.

Exercice 3: Soit G un groupe et g un élément de G. Soit ϕ_g l'application de G dans G définie par $h \longmapsto ghg^{-1}$. Montrer que ϕ_g est un homomorphisme de groupes. Si le groupe G est commutatif, que vaut ϕ_g ?

Exercice 4: Montrer que pour tout entier n, l'ensemble (noté $n\mathbf{Z}$) des entiers relatifs multiples de n est un sous-groupe de \mathbf{Z} .

Réciproquement soit H un sous-groupe de \mathbf{Z} . Montrer que H admet un plus petit élément positif, que l'on appelle a. Montrer que H contient le groupe $a\mathbf{Z}$. Montrer que H est égal au groupe $a\mathbf{Z}$.

Exercice 5: (Cette question est difficile. Elle demande des connaissances sur les espaces vectoriels) Soit ϕ un homomorphisme du groupe \mathbf{R} dans lui-même. Montrer qu'il s'agit d'une application linéaire du \mathbf{Q} -espace vectoriel \mathbf{R} dans lui-même. Est-ce une application \mathbf{R} -linéaire ?

Exercice 6: Soit a et b deux nombres réels. On considère la fonction $f_{a,b}$ de \mathbf{R} dans lui-même définie par $x \longmapsto ax + b$. Montrer que l'ensemble des $f_{a,b}$ avec a non-nul est un groupe pour la composition des fonctions. Quel est l'élément neutre et quel est l'inverse de $f_{a,b}$? Ce groupe est-il commutatif?